ZnO and MXenes as electrode materials for supercapacitor devices

نویسندگان

چکیده

Supercapacitor devices are interesting owing to their broad range of applicability from wearable electronics energy storage in electric vehicles. One the key parameters that affect efficiency supercapacitor is selecting ideal electrode material for a specific application. Regarding this, recently developed metal oxides, specifically nanostructured ZnO, and MXenes with defect structures, size effects, as well optical electronic properties have been presented devices. The discussion along although different chemistry, also highlights differences dimensionality when it comes defect-driven especially carrier transport. volume under influence centers expected be bulk 2D regardless composition. Hence, analysis both materials provide fundamental understanding regarding manner which structures impacted by defects compared bulk. Such an approach would therefore serve scientific community design tools needed fabricate next generation

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid ZnO/ZnS nanoforests as the electrode materials for high performance supercapacitor application.

Heterostructured ZnO/ZnS nanoforests are prepared through a simple two-step thermal evaporation method at 650 °C and 1300 °C in a tube furnace under the flow of argon gas, respectively. A metal catalyst (Au) to form a binary alloy has been used in the process. The as-obtained ZnO/ZnS products are characterized by using a series of techniques, including scanning electron microscopy (SEM), X-ray ...

متن کامل

Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials.

Efficient intercalation of ions in layered materials forms the basis of electrochemical energy storage devices such as batteries and capacitors. Recent research has focused on the exfoliation of layered materials and then restacking the two-dimensional exfoliated nanosheets to form electrodes with enhanced electrochemical response. Here, we show that chemically exfoliated nanosheets of MoS2 con...

متن کامل

Nitrogen Doped Macroporous Carbon as Electrode Materials for High Capacity of Supercapacitor

Nitrogen doped carbon materials as electrodes of supercapacitors have attracted abundant attention. Herein, we demonstrated a method to synthesize N-doped macroporous carbon materials (NMC) with continuous channels and large size pores carbonized from polyaniline using multiporous silica beads as sacrificial templates to act as electrode materials in supercapacitors. By the nice carbonized proc...

متن کامل

Photonic Materials and Devices

Our recent advances in solid-state optoelectronic materials and devices will be reviewed. In the area of glass optics, fabrication of novel microstructured and multi-core fibers and their use in realizing single mode lasers will be summarized. In organic and plastic optics, photorefractive polymers for 3D display applications and nonlinear optical polymers for high speed modulators in RF photon...

متن کامل

Graphene/Ruthenium Active Species Aerogel as Electrode for Supercapacitor Applications

Ruthenium active species containing Ruthenium Sulphide (RuS₂) is synthesized together with a self-assembled reduced graphene oxide (RGO) aerogel by a one-pot hydrothermal synthesis. Ruthenium Chloride and L-Cysteine are used as reactants. The hydrothermal synthesis of the innovative hybrid material occurs at 180 °C for 12 h, by using water as solvent. The structure and morphology of the hybrid ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Beilstein Journal of Nanotechnology

سال: 2021

ISSN: ['2190-4286']

DOI: https://doi.org/10.3762/bjnano.12.4